Адсорбция и катализ
В гетерогенном катализе на твердом катализаторе промежуточное химическое взаимодействие реактантов с катализатором осуществляется лишь на его доступной для молекул реагирующих веществ, так называемой реакционной, поверхности посредством адсорбции. Удельная реакционная поверхность гетерогенного катализатора определяется его пористой структурой, т. е. количеством, размером и характером распределения пор.
Однако не всякая поверхность твердого тела обладает каталитической активностью. На поверхности одних веществ может происходить лишь физическая адсорбция, а других — хемосорбция с более прочной химической связью. Так, на поверхности активированного угля водород и азот могут адсорбироваться лишь физически, а кислород и при высоких температурах водяной пар подвергаются химической адсорбции и при их десорбции выделяются не О2 и Н2О, а продукты их хемосорбции в виде СО, СО2 и Н2. Это свидетельствует о том, что тип и прочность промежуточной (т. е. поверхностной) химической связи обусловливаются химическим строением твердого тела, а также сродством последнего по отношению к молекулам реактантов.
Адсорбция, как физическая, так и химическая, обусловливается избыточной свободной энергией поверхности. Если валентные связи между атомами и ионами, расположенными внутри объема твердого тела, взаимно скомпенсированы (насыщены), то такой компенсированности межмолекулярных сил на его поверхности (как и на поверхности жидкости) не происходит. Кроме того, поверхность твердого тела не является идеально гладкой, а имеет многочисленные ультрамикроскопические выступы и углубления различных форм в зависимости от геометрии кристаллической решетки. Сама кристаллическая решетка также не всегда идеальна и однородна, и на ней имеются различного рода дефекты и примеси. Естественно, степень компенсированности валентных сил на различных участках неоднородной поверхности твердого тела различна и, следовательно, неоднородна адсорбционная активность этой поверхности. Наиболее активные участки (центры) поверхности будут более энергично адсорбировать (хемосорбировать) молекулы реактантов. Отсюда следует вывод о том, что адсорбция (хемосорбция) неоднородна.
Физическая и химическая адсорбции различаются между собой по следующим признакам:
- Теплоты физической адсорбции всегда малы и близки к теплотам конденсации (10…50 кДж/моль). Теплоты же хемосорбции близки к теплотам химических реакций (80…400 кДж/моль и более).
- Физическая адсорбция осуществляется обычно при низких температурах, близких к температуре конденсации адсорбата. Химическая адсорбция может иметь место как при низких, так и гораздо более высоких температурах.
- Физическая адсорбция протекает практически без энергии активации. Хемосорбция, подобно химической реакции, осуществляется со значительной энергией активации, и с повышением температуры ее скорость возрастает в соответствии с величиной энергии активации по закону Аррениуса.
- Физическая адсорбция не обладает значительной специфичностью. Благодаря этой особенности она используется для измерения удельной поверхности твердых катализаторов и твердых тел. В противоположность этому хемосорбция, вследствие своей химической природы, очень специфична.
- Физическая адсорбция всегда обратима, благодаря чему в системе может установиться равновесие адсорбция десорбция. Хемосорбция может быть и необратимой.
- Физическая адсорбция может привести к образованию полимолекулярного слоя адсорбата. При хемосорбции, за некоторым исключением, всегда образуется монослой сорбированных молекул.
- Физическая адсорбция всегда экзотермична, в то время как хемосорбция может быть и эндотермической.
- Под действием яда хемосорбция (и каталитическая реакция) может подавляться полностью, в то время как адсорбция может протекать с заметной скоростью.
Для гетерогенного катализа, протекающего на поверхности твердых катализаторов, имеют значение все формы адсорбции, однако решающая роль в гетерогенном катализе принадлежит хемосорбции: все гетерогенные каталитические процессы начинаются с хемосорбции и заканчиваются практически хемодесорбцией.
Физическая адсорбция, хотя и не играет решающей роли в гетерогенном катализе, тем не менее полезна как средство для исследования пористой структуры твердых тел. Она удобна для определения
удельной поверхности, формы и размеров пор, наличия закрытых пор и других деталей геометрического строения пористых катализаторовт и носителей, особенно в сочетании с электронной микроскопией и ртутной порометрией.
ТЕХНОЛОГИЯ И ОБОРУДОВАНИЕ ПРОЦЕССОВ ПЕРЕРАБОТКИ НЕФТИ И ГАЗА, С. А. Ахметов, Т. П. Сериков, И. Р. Кузеев, М. И. Баязитов, 2006