Нефтегазовая энциклопедия > Переработка нефти и газа > Энергетика и химическая природа катализа

Энергетика и химическая природа катализа

  В соответствии с современными физико-химическими представлениями о сущности катализа катализатор и реагирующие вещества следует рассматривать как единую каталитическую реакционную систему, в которой химические превращения испытывают не только реактанты под действием катализатора, но и катализатор при взаимодействии с реагентами. В результате такого взаимного воздействия в реакционной системе устанавливается стационарный состав поверхности катализатора, определяющий его каталитическую активность. Отсюда следует, что катализатор — не просто место осуществления реакции, а непосредственный участник химического взаимодействия, и его каталитическая активность обусловливается химической природой катализатора и его химическим сродством к реактантам.

  Исходя из основного постулата о химической природе взаимодействия в каталитической реакционной системе можно сформулировать некоторые важные для предвидения каталитического действия термодинамические и кинетические принципы.

  1. Катализатор должен химически взаимодействовать хотя бы с одним из компонентов реагирующих веществ (с образованием координационных, ионных или ковалентных связей).
  2. Изменение свободной энергии процессов взаимодействия в каталитической реакционной системе должно быть менее отрицательным, чем изменение свободной энергии катализируемой реакции, т. е. соединения реагирующих веществ с катализатором должны быть термодинамически менее прочными, чем продукты реакции (если это требование не соблюдается, катализатор быстро выходит из строя, образуя нерегенерируемое прочное химическое соединение).
  3. Многостадийный каталитический процесс термодинамически будет наиболее выгодным (вероятным), если изменения свободной энергии на каждой из стадий примерно одинаковы и равны половине изменения теплового эффекта суммарного процесса.
  4. В кинетическом отношении каталитическая реакция будет идти с большей скоростью, если в результате промежуточного химического взаимодействия катализатор будет снижать энергию активации химической реакции (или одновременно повышать предэкспонент Аррениуса). Это правило согласуется с принципом компенсации энергии разрывающихся связей в катализе. Оно согласуется также с принципом энергетического соответствия мультиплетной теории А. А. Баландина.
  5. Установлена определенная закономерность между специфичностью каталитического действия и типом кристаллической структуры твердых тел. Каталитической активностью ионного и электронного типов обладают твердые тела соответственно с ионной и металлической кристаллической структурой, а также кристаллы промежуточного (ионно-металлического) типа. Молекулярные и ковалентные кристаллы в отношении катализа практически инертны.

  Ионный катализ. Катализаторами в ионном (гетеролитическом) катализе являются кислоты и основания. Каталитическая активность кислот и оснований обусловливается способностью их к обмену реагирующей молекулой ионом или парой электронов с образованием промежуточного соединения ионного типа, обладающего высокой реакционной способностью.

  Согласно протонной теории Бренстеда и Лоури, кислота и основание — вещества (нейтральные молекулы или ионы), являющиеся соответственно донором или акцептором протона, т. е.

  В теории Бренстеда-Лоури отличительным признаком кислоты считается наличие в ее молекуле протона. Эта теория не рассматривает проявления кислотного характера веществами, не содержащими водорода, например SnCl4, BF3, AlCl3, ZnCl2, алюмосиликата, цеолита и др. Недостатки протонной теории устранены и дополнены в электронной теории кислот и оснований Льюиса.

  По электронной теории Льюиса кислотой и основанием являются вещества, являющиеся соответственно акцептором и донором электронных пар. Льюисовские кислоты (L-кислоты) и основания могут не содержать протонов и, следовательно, являются апротонными. Кислотно-основное взаимодействие заключается в образовании донорноакцепторной связи типа

  Большинство катионов являются L-кислотами, а анионов — льюисовскими основаниями. Соли — типичные кислотно-основные комплексы. Как видно, электронная теория Льюиса рассматривает вопрос
о кислотах и основаниях более широко, чем другие теории.

  Наиболее типичным примером реакций, протекающих по механизму общего кислотного катализа, являются каталитические превращения углеводородов нефти, имеющие место в таких важных в нефтепереработке процессах, как каталитический крекинг, изомеризация и алкилирование.

  Апротонные кислоты Льюиса (AlCl3, BF3, ZnCl, SbF4) часто катализируют те же реакции, что и протонные кислоты Бренстеда, причем активность апротонных кислот иногда выше, чем протонных. Обусловливается это тем, что в водных средах (например, в каталитическом крекинге в присутствии водяного пара) апротонные кислоты превращаются в протонные:

  При взаимодействии с кислотами углеводороды ведут себя как слабые основания. Из всех классов углеводородов наибольшей основностью обладают алкены, при этом основность изоалкенов выше.

  Полициклические арены являются значительно более сильными основаниями по сравнению с моноциклическими. Алканы характеризуются наименее слабой основностью.

  В нефтепереработке принято называть образующиеся при взаимодействии углеводородов с кислотным катализатором первичное (промежуточное) соединение карбений-ионом или карбкатионом, а катализ — соответственно карбений-ионным.

  Карбкатионы наиболее легко образуются при передаче протона от бренстедского кислотного катализатора к молекуле олефина, который может образоваться при термолизе углеводородов:

 Надо отметить, что протон Н+ (гидрид-ион, гидрид-радикал Н) характеризуется исключительно высокой реакционной способностью, что объясняется отсутствием у него электронной оболочки. Гидрид-ион —
единственный катион, не имеющий электрона. Диаметр Н+ примерно в 104 раз меньше диаметра любого другого катиона.

  Карбкатион, образующийся при взаимодействии протона с олефином, называют карбений-ионом. Термин «карбоний-ион», часто неправильно используемый в литературе, относят к карбкатиону, образующемуся в результате присоединения протона к парафину:

 и т.д.

  При атаке протоном олефина π-электроны двойной связи используются для образования новой σ-связи между протоном и одним из углеродных атомов, образующим двойную связь, при этом второй углеродный атом углеводорода заряжается положительно. Таким образом, карбений-ион является промежуточной структурой между олефином, имеющим π-связь, и парафином, в котором есть только σ-связь.

  При взаимодействии олефина с протоном возможно образование двух разных карбений-ионов:

  Расчеты показывают, что теплота образования первичных карбениевых ионов на 81 кДж/моль больше, чем для вторичных, и на 81 + 61 кДж/моль больше, чем для третичных. Вследствие этого первичные карбениевые ионы быстро переходят в третичные.

  Карбениевые ионы являются высокоактивными частицами, вступающими во вторичные реакции с углеводородами с исключительно большой скоростью. Активность (константа скорости) карбений-ионов
на несколько порядков выше активности радикалов.

  Основными реакциями карбкатионов, как и радикалов, являются мономолекулярный распад по Р-правилу и бимолекулярные реакции замещения и присоединения. Существенное отличие карбкатионов от радикалов — способность первых к изомеризации, что объясняется значительным снижением свободной энергии при переходе от первичного к вторичному и третичному карбкатионам.

  Электронный катализ. В электронном (окислительно-восстановительном) катализе ускоряющее действие катализаторов достигается облегчением электронных переходов в гемолитических реакциях за счет свободных электронов переходных металлов.

  Переходные металлы являются активными катализаторами в подавляющем большинстве окислительно-восстановительных реакций. Железо, например, является классическим катализатором синтеза аммиака. Кобальт, никель, медь и металлы платиновой группы проявляют высокую активность в процессах гидрирования и дегидрирования, а также окисления. Серебро является практически единственным катализатором парциального окисления (например, этилена до его окиси).

  Характерной особенностью переходных металлов является незавершенность их электронных d-оболочек, определяющая их специфические химические (переменная валентность, склонность к комплексообразованию), многие физические (образование кристаллов металлического типа, работа выхода электрона из металла, электропроводимость, магнитные свойства и др.) и каталитические свойства.

  В кристаллическом состоянии часть электронов из d-оболочек переходит в зону проводимости и возникает возможность обмена электронами между d- и внешней s-оболочкой. Энергетическая легкость подобного перехода (определяемая работой выхода электрона из металла) приводит к тому, что на внешней поверхности кристалла образуется определенное число свободных электронов. Их наличие приводит к появлению на поверхности свободных валентностей — положительных в случае свободного электрона (электронно-донорная проводимость) и отрицательных при отсутствии электрона (электронно-акцепторная, так называемая «дырочная» проводимость) у частицы, расположенной на поверхности кристалла.

  Наличие свободных валентностей на поверхности электронных катализаторов определяет прежде всего их адсорбционные (хемосорбционные) свойства. При этом возможны два различных механизма процесса хемосорбции.

  1. Поверхность катализатора обладает меньшим сродством к электрону адсорбирующегося атома или молекулы, как, например, хемосорбция кислорода на металлической поверхности. В этом случае возникает ковалентная связь за счет перехода свободных электронов из металла к кислороду (т. е. кислород является окислителем).
  2. Поверхность металла обладает большим сродством к электрону, по сравнению со сродством к электрону адсорбирующегося атома. Типичный пример — хемосорбция водорода на металлической поверхности (например, платины). В этом случае происходит переход электрона от адсорбирующейся молекулы в металл (водород является восстановителем).

  Бифункциональный катализ имеет место в других промышленно важных процессах, в которых одни стадии сложной реакции протекают по ионному, а другие — электронному катализу. По такому ионно-электронному катализу осуществляются реакции ароматизации (дегидроциклизации) нормальных алканов и пятичленных нафтенов в процессе каталитического риформинга бензина, реакции деструктивного гидрирования в процессе гидрокрекинга, а также изомеризации С4–С6 алканов.

  Естественно, катализаторы бифункционального катализа должны содержать в своем составе одновременно оба типа центров — и металлические (м. ц.), и кислотные (к. ц.). Так, полиметаллический алюмоплатиновый катализатор риформинга представляет собой платину, модифицированную редкоземельными металлами (например, Re), на носителе — окиси алюминия, промотированном кислотой (хлором). В катализаторе гидрокрекинга, например алюмокобальтмолибденцеолитовом (или алюмоникельмолибденцеолитовом), Со + Мо или Ni + Mo осуществляют гидрирующе-дегидрирующие функции, а цеолит является кислотным компонентом. В качестве примера приведем возможные схемы протекания подобных реакций.

  1. Реакция дегидроциклизации нормального гексана:

  1. Реакция гидрокрекинга С16Н34:

  1.   Реакции изомеризации н-бутана

 

 ТЕХНОЛОГИЯ И ОБОРУДОВАНИЕ ПРОЦЕССОВ ПЕРЕРАБОТКИ НЕФТИ И ГАЗА, С. А. Ахметов, Т. П. Сериков, И. Р. Кузеев, М. И. Баязитов, 2006

Читайте также: